Hydro-dynamics in CUDA
Integration with FORTRAN
Contents

- Context
- What is CUDA?
- Example: matrix multiplication
- Example: Thomas in CUDA
- Correctness Thomas
- Achieved results & future prospects
- Conclusion
- Questions
Me
- Jonathan van der Wielen
- Bachelor Technical Computer Science
 - High performance

Goal:
- Use CUDA for performance gains in MOHID
Context

- Maretec, IST
 - Marine Environment & Technology Center
 - Numerical models for coastal, ocean and land areas (MOHID)
- FORTRAN
Contents

- Context
- What is CUDA?
- Example: matrix multiplication
- Example: Thomas in CUDA
- Correctness Thomas
- Achieved results & future prospects
- Conclusion
- Questions
What is CUDA?

- NVIDIA technology
- Run general purpose applications on GPU
- Massively parallel data processing
- Program in C++ or FORTRAN
What is CUDA?
What is CUDA?

- Streaming Multiprocessors (SM’s)
- Several types of memory
- Grids, blocks, threads
- All threads execute the same code, but with different data
What is CUDA?
Contents

- Context
- What is CUDA?
- Example: matrix multiplication
- Example: Thomas in CUDA
- Correctness Thomas
- Achieved results & future prospects
- Conclusion
- Questions
// CPU implementation (C++)
void MatrixMulHost(float* a, float* b, float* c, int width)
{
 for (int i = 0; i < width; i++)
 {
 for (int j = 0; j < width; j++)
 {
 float temp = 0;
 for (int k = 0; k < width; k++)
 {
 temp +=
 a[i * width + k] * b[k * width + j];
 }
 c[i * width + j] = temp;
 }
 }
}
// CUDA implementation (host) (1200x faster than CPU)
void MatrixMul(float *a, float *b, float *c, int width) {
 float *devA = 0, *devB = 0, *devC = 0;
 int size = sizeof(float) * width * width;
 cudaMalloc((void**)&devA, size);
 cudaMalloc((void**)&devB, size);
 cudaMalloc((void**)&devC, size);
 cudaMemcpy(devA, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(devB, b, size, cudaMemcpyHostToDevice);
 cudaMemcpy((void**)&devA, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy((void**)&devB, b, size, cudaMemcpyHostToDevice);

 dim3 block(16, 16);
 dim3 grid(ceil((float)width / block.x), ceil((float)width / block.y));
 KernelMatrixMul<<<grid, block>>>(devA, devB, devC, width);
 cudaMemcpy(c, devC, size, cudaMemcpyDeviceToHost);
}
// CUDA implementation (device)
__global__ void KernelMatrixMul(float *a, float *b, float *c, int width) {
 int i = blockIdx.y * blockDim.y + threadIdx.y;
 int j = blockIdx.x * blockDim.x + threadIdx.x;

 if(i < width && j < width)
 {
 float temp = 0;

 for(int k = 0; k < width; k++)
 {
 temp += a[i * width + k] * b[k * width + j];
 }

 c[i * width + j] = temp;
 }
}
Contents

- Context
- What is CUDA?
- Example: matrix multiplication
- Example: Thomas in CUDA
- Correctness Thomas
- Achieved results & future prospects
- Conclusion
- Questions
Example: Thomas in CUDA

- Tridiagonal solver for implicit schemes
- Sweep back and forth over a matrix:

\[
\begin{bmatrix}
 b_1 & c_1 & 0 \\
 a_2 & b_2 & c_2 \\
 & a_3 & b_3 & \ddots \\
 & & \ddots & a_{n-1} & c_{n-1} \\
 0 & & \cdots & a_n & b_n
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_{n-1} \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 d_1 \\
 d_2 \\
 \vdots \\
 d_{n-1} \\
 d_n
\end{bmatrix}.
\]

- Top left to bottom right is a dimension
Example: Thomas in CUDA

- How to parallelize?
 - Algorithm itself cannot be parallelized
 - Algorithm is executed for every \([I,J]\) cell for \([K]\)
 - These operations are independent
Example: Thomas in CUDA

- My approach
 - Write Thomas in CUDA / C++, independent of MOHID
 - Realize binding between FORTRAN and C
 - Integrate CUDA code into MOHID
 - Run performance and correctness benchmarks
Example: Thomas in CUDA

- Program flow
Correctness Thomas

- Some deviation expected due to rounding errors
- Maximum deviation in water level after one hour simulation: 0.0000000618%
- Higher deviation in velocity; influence on end results is negligible
Correctness Thomas

Water level at point [25, 31]

Water level (m)

Simulation time (s)

CUDA
FORTRAN opt.
Achieved results Thomas

Tejo test case - Total execution time

Execution time (s)

- FORTRAN
- CUDA

- Thomas code
- Other code
Achieved results Thomas

- Most overhead: data transfer
- How to minimize overhead?

![Bar chart showing execution time for X, Y, and Z dimensions with different execution modes: Copy, Transpose, Thomas.]
Future prospects

Rough speed up estimation for ModuleHydroDynamic

Execution time

- Parallelizable
- Estimated overhead

FORTTRAN

CUDA Z-based
Contents

- Context
- What is CUDA?
- Example: matrix multiplication
- Example: Thomas in CUDA
- Correctness Thomas
- Achieved results & future prospects
- Conclusion
- Questions
CUDA gives interesting performance gains for 2D or 3D numerical models

- Reusable binding between FORTRAN and CUDA
- Switching to CUDA can be done in phases
- Using CUDA brings extra complexity
- Getting the best performance requires running a whole application in CUDA
Contents

- Context
- What is CUDA?
- Example: matrix multiplication
- Example: Thomas in CUDA
- Correctness Thomas
- Achieved results & future prospects
- Conclusion
- Questions
References

- MOHID:
 - http://mohid.codeplex.com
 - http://mohid.wordpress.com

- CUDA:
 - David B. Kirk & Wen-mei W. Hwu, 2010, *Programming Massively Parallel Processors*
 - Jason Sanders & Edward Kandrot, 2011, *CUDA by Example*
Questions